Ir al contenido principal

La acción fantasmagórica de Einstein, probada en laboratorio


El efecto es importante para desarrollar futuras redes de comunicación cuántica - U. Griffith

Investigadores consiguen «domesticar», en condiciones que imitan el mundo real, el entrelazamiento cuántico de partículas que están separadas entre sí. El efecto es importante para desarrollar futuras redes mundiales de comunicación totalmente seguras

Un equipo de científicos de la universidad australiana de Griffith ha conseguido, por primera vez, superar uno de los grandes desafíos de la Física al lograr aplicar un extraño efecto cuántico a nuestra realidad macroscópica.

Los investigadores, del centro de Dinámica Cuántica de la universidad, han conseguido, en efecto, demostrar con todo rigor si un par de fotones (partículas de luz), hacen efectivamente gala de lo que Einstein llamó "la escalofriante acción a distancia" de las partículas subatómicas. Y lo han hecho, incluso, en condiciones adversas y que imitan a las del mundo real, fuera del laboratorio.

El equipo de científicos demostró que el fantasmagórico efecto, también conocido como entrelazamiento cuántico, se puede verificar incluso cuando muchos de los fotones se pierden por absorción o dispersión a medida que viajan desde su punto de origen hasta su destino a través de un canal de fibra óptica. El trabajo se acaba de publicar en la revista Science Advances.

El efecto es muy importante para el desarrollo de las futuras redes mundiales de información cuántica, cuyas transmisiones serán totalmente seguras, tal y como garantizan las leyes de la física. A estas redes, además, se vincularán los ya cercanos y poderosísimos ordenadores cuánticos.

El entrelazamiento cuántico es una extraña y aún no bien comprendida relación que se genera entre dos partículas, de forma que cualquier cambio que sufra la partícula A es inmediatamente "conocido" por la partícula B, sin importar la distancia que las separe. Y aunque no sabemos aún del todo bien cómo se produce esa "comunicación" entre las partículas entrelazadas, el hecho de que sea inmediata ha empujado a numerosos científicos a tratar de aprovechar el efecto para construir redes de telecomunicaciones instantáneas e inviolables.

Los fotones, por ejemplo, se pueden usar para formar un "enlace cuántico" entre dos ubicaciones. Basta con entrelazarlos y luego enviar a uno de los dos a través de un canal de comunicaciones. Cualquier medición o cambio que se haga con el fotón no enviado, determinará de forma instantánea las propiedades de su "gemelo".

Sin embargo, el líder del equipo, Geoff Pryde, asegura que ese enlace cuántico debía de pasar antes una serie de pruebas muy exigentes que demostraran si realmente las dos partículas en los extremos del canal de comunicación estaban experimentando el efecto. "Fallar en esa prueba -afirma Pryde- significa que un espía podría estar infiltrándose en la red".

El problema principal para el desarrollo de esta clase de redes de comunicaciones es que, por ahora, solo se ha conseguido que funcionen en distancias muy cortas. Cuanto más largo es el canal cuántico, en efecto, menos fotones pasan con éxito a través del enlace, ya que "ningún material es perfectamente transparente y la absorción (de fotones) y la dispersión, al final pasan factura. Y cada fotón perdido hace que sea más fácil para un espía romper la seguridad, imitando el entrelazamiento".

Por eso, desarrollar un método capaz de probar el entrelazamiento incluso cuando se sufren tales pérdidas, ha supuesto un gran desafío científico desde hace años.

Teleportación cuántica
Pero los científicos australianos decidieron utilizar una aproximación diferente para superar el problema de los fotones perdidos: la teleportación cuántica.

Morgan Weston, primera firmante del artículo, explica que los investigadores seleccionaron primero los pocos fotones que habían logrado sobrevivir al canal de alta pérdida y "teletransportaron" a esos afortunados fotones hasta otro canal cuántico, limpio y en pleno funcionamiento. "Una vez ahí -añade la investigadora- la prueba de verificación elegida, llamada dirección cuántica, podía realizarse sin ningún problema. Nuestro esquema registra una señal adicional que nos permite saber si una partícula de luz ha atravesado el canal de transmisión. Eso significa que los eventos de distribución fallidos pueden excluirse por adelantado, lo que permite que la comunicación se implemente de forma segura incluso en presencia de pérdidas muy altas".

El trabajo no fue fácil. La teleportación de las partículas, en efecto, requiere de pares adicionales de fotones de alta calidad, ya que lo que se "teletransporta" no es la partícula en sí, sino sus propiedades. Y esos pares adicionales de fotones deben generarse y detectarse con una eficiencia extremadamente alta, para compensar el efecto de la línea de transmisión perdida. Algo que fue posible gracias a una tecnología de vanguardia de detección de fotones, desarrollada ex profeso por los investigadores y el Instituto Nacional de Estándares y Tecnología de Estados Unidos de Boulder, Colorado.

Aunque el experimento se llevó a cabo en laboratorio, logró probar canales de comunicación equivalentes a unos 80 km. de fibra óptica. Ahora, el equipo tiene como objetivo integrar su método en las redes cuánticas que están siendo desarrolladas por el Centro de Excelencia del Consejo de Investigación Australiano para la Computación Cuántica y las Tecnologías de la Comunicación, con objeto de probarlo en un entorno real.

FUENTE: ABC.ES

Comentarios

Entradas más populares de este blog

1978: Comandante de una nave extraterrestre se entrevista con cónsul ecuatoriano

A nivel internacional diversos investigadores se han enfrascado en la elaboración de posibles protocolos para recibir a los extraterrestres, por lo que se estudian varias posibilidades para la entrega de información y de tecnología. Sabemos por las diversas desclasificaciones de documentos OVNI que para los Gobiernos es un tema que en lo público lo ridiculizan, pero en lo privado les preocupa. El caso que más llamó la atención en América del sur y que pone de manifiesto el interés de algunos alienígenas en mantener comunicación con los gobiernos sucedió el 4 de agosto de 1978 a las 18:30 horas en la embajada de Ecuador en Lima, Perú, cuando se presentó el comandante de una nave extraterrestre de nombre Banghu, quien pidió, sin éxito hablar con el representante ecuatoriano. Al día siguiente llegó un “requerimiento secreto” proveniente del Ministerio de Defensa de Ecuador a esa embajada para solicitar el número de tanques de guerra que desembarcarían en el puerto del Callao, el más im

Narciso Genovese: "Yo he estado en Marte"

Nacido en Turín, Italia, en 1911, Narciso Genovese emigra a la república de El Salvador y más tarde se traslada a México donde termina por radicar en la ciudad de Tijuana. Desde mediados de los años cincuenta comienza a publicar libros. Entre sus obras más importantes figuran: "Yo he estado en Marte" (1958) y "La Nueva Aurora" (1970). No hay que olvidar los manifiestos universales que publica en esas fechas como: "Jesucristo Hombre" y "La hecatombe y la paz"., que buscan ser alertas contra la guerra nuclear y la deshumanización de los seres humanos. En 1965, Ruben Vizcaíno Valencia funda la Asociación de Escritores de Baja Califonia e invita a Narciso Genovese a formar parte de ella. Se hace famoso con su obra "Yo he estado en Marte". En la primera edición acepta que su obra es “la cristalización de una fantasía novelesca de ciencia ficción”, pero en 1966, en su segunda edición en español (hay una traducción al alemán de 1964), decl

¿No aparece la Nueva Física? Usemos la fuerza bruta

Simulación de un choque de partículas en el LHC - CERN Los métodos convencionales no han producido ningún descubrimiento desde el hallazgo del bosón de Higgs en 2012. Los físicos del LHC quieren cambiar esta situación José Manuel Nieves @josemnieves Han pasado ya seis años desde el descubrimiento del bosón de Higgs y la Física, desde entonces, parece haber entrado en un incómodo impasse. Tras casi 50 años de búsqueda, el hallazgo en 2012 de la esquiva partícula cuya existencia fue predicha por Peter Higgs en 1964 completó el Modelo Estándar y cerró un capítulo importante en nuestra comprensión de la materia y las leyes que la gobiernan. Pero el Modelo Estándar, la teoría que reúne a todos los componentes de la materia junto a las interacciones a las que están sometidos, deja sin explicar cuestiones importantes, entre ellas la gravedad, cuya partícula asociada, si es que existe, jamás ha sido descubierta, la materia y la energía oscuras o la inexplicable falta de antimateria en