Ir al contenido principal

La cara oculta de la luz: la entropía de la radiación


La luz está determinada por la energíay la entropía - Joseph (FLICKR)

El científico Alfonso Delgado Bonal habla sobre una investigación que ha realizado y según la cual la energía que se pierde en forma de calor reduce en un ocho por ciento la eficiencia global de la fotosíntesis

Si quiere poner en un aprieto a un físico, puede pedirle que le conteste en pocas palabras a la siguiente pregunta: ¿qué es la luz? y verá como unos responden «es un conjunto de partículas llamadas fotones», mientras que otros le dicen «son ondas que viajan por el espacio a una velocidad de 299.792.458 m/s». La realidad es que la respuesta a la pregunta requiere saber mecánica cuántica y tenemos una dualidad onda-partícula: la radiación (y otras partículas) pueden comportarse como onda o como corpúsculo dependiendo del experimento. La explicación de que la radiación son partículas le valió a Albert Einstein un premio Nobel por su artículo de 1905.

La demostración de que la luz eran partículas se hizo utilizando una cara de la luz que nunca se ve, la entropía. Al igual que la luz es onda y partícula, la luz es energía y entropía. La entropía es, entre otras cosas, una magnitud que nos dice cuánto calor se pierde en un proceso, de modo que no podemos tener un proceso eficiente al 100%, siempre se va a perder energía en forma de calor.

¿Qué hemos descubierto?
Esa cantidad de energía que «perdemos» se puede calcular con la entropía. En el caso de la fotosíntesis, la radiación llega a la planta y se transforma en energía química, pero no al 100%. Calculando la entropía de la radiación, un artículo que se publica hoy en Scientific Reports determina que el máximo rendimiento de la fotosíntesis en la Tierra es un 8% menos de lo que se pensaba. Hemos determinado ese valor para la región visible de la radiación y hemos demostrado que, además, la eficiencia de la fotosíntesis depende de la temperatura: si se llevan una planta a Marte, la eficiencia máxima de la radiación es diferente allí, al igual que entre el desierto o los polos de nuestro planeta.

Además de la fotosíntesis, la entropía de la radiación puede usarse para resolver problemas en diferentes campos. El mismo artículo muestra cómo el uso de esta magnitud puede servir para medir el cambio climático directamente, no solo sus efectos indirectos en la Tierra como el aumento de la temperatura o el deshielo de los polos. Como la entropía está relacionada con la pérdida de calor, un análisis de los cambios producidos en la atmósfera permite estudiar cómo ha evolucionado la termodinámica de nuestra atmósfera, y estudiar el efecto de los diferentes compuestos químicos y su disipación de calor.

Por otro lado, otra de nuestras teorías afirma que la entropía de la radiación sirve también para explicar la evolución de la visión humana. La hipótesis se planteó en otro artículo publicado en también en Scientific Reports, donde se descubrió una nueva constante física a la que llamamos «constante de Wien de la entropía». Ahora, tenemos una prueba más formal de esta teoría. El ojo humano ve en todos los colores del espectro visible de la luz solar, pero hay dos colores preferidos llamados «picos de absorción» que dependen de las condiciones de iluminación. Hasta la fecha no existía una teoría que explicara exactamente por qué esos dos colores son los preferidos, y utilizando la entropía de la radiación se puede dar una explicación: los ojos del ser humano han evolucionado buscando la máxima información posible, no únicamente la máxima energía.

¿Por qué es importante?
El artículo recupera una forma de analizar la radiación a la que no se le ha prestado mucha atención desde principios del siglo pasado. Sin embargo, este nuevo enfoque permite estudiar la radiación desde un punto de vista diferente, y obtener resultados que no pueden conseguirse únicamente mediante el estudio de la energía.

¿Qué aporta de novedoso?
El trabajo desarrolla una serie de ecuaciones que permiten calcular la constante de Wien de la entropía en distintos casos, y calcular cuánta entropía hay en diferentes regiones del espectro solar. Además pone de manifiesto la importancia de la temperatura cuando se analizan procesos de radiación: cuando la luz llega a una planta, la fotosíntesis transforma la luz en energía química, pero al mismo tiempo la planta está emitiendo energía en forma de radiación como consecuencia de su propia temperatura. Este hecho hay que tenerlo en cuenta para calcular correctamente los rendimientos en diferentes entornos como el desierto, los polos, o incluso para un posible viaje a Marte llevando lechugas.

¿Cómo se ha realizado esta investigación?
El trabajo se ha desarrollado mediante métodos teóricos y utilizando simulaciones por ordenador para estudiar el comportamiento de la entropía en la atmósfera. Se ha llevado a cabo en la Universidad de Salamanca, con un proyecto co-financiado por Fundación Iberdrola España.

¿Qué aplicaciones puede tener el hallazgo?
Los métodos utilizados y las ecuaciones propuestas en este artículo son universales, y pueden aplicarse a diferentes campos como fotosíntesis, cambio climático o la visión del ser humano, abriendo la puerta a estudios en biofísica, telecomunicaciones o robótica, y en general en cualquier campo que utilice la radiación como fuente de energía o información.

FUENTE: ABC.ES

Comentarios

Entradas más populares de este blog

Avistamiento Ovni en Yucatán, en la vía Acanceh-Tecoh (México)

Muchos de los reportes de OVNIS son desde las carreteras. (Jorge Moreno/SIPSE)

Don Manuel relata las ocasiones en que vio Ovnis en las carreteras de Yucatán durante la noche.

Jorge Moreno/SIPSE

Tres personas me contactaron para informarme que por dos noches consecutivas (jueves 8 y viernes 9 de septiembre 2016) vieron Ovnis en la carretera del mundo maya, tramo Acanceh-Tecoh, es decir, a unos 25 kilómetros de Mérida.

Las descripciones de los tres reportes son similares, dos luces de color azul (separadas) que se siguen una a otra y por momento se alejan; no hacían ningún tipo de ruido, estaban a una distancia relativamente baja y la luz emitida era tenue, pero intermitente por momentos.

Las tres personas no se conocen entre sí, pero pasaron por ese sitio entre las nueve y las once de la noche, ese decir la aparición del Ovnis duró bastante tiempo.

Y aunque no dan más detalles al respecto (ya estamos investigando a través de nuestros corresponsales en esa zona), uno de ellos nos comen…

La Estación Espacial Internacional despliega un pequeño prototipo de ascensor espacial

Estación Espacial Internacional. Un módulo japonés de experimentación es capaz de lanzar minisatélites de forma barata - NASA

Ha lanzado un minisatélite que desplegará un cable de kevlar de 100 metros de longitud para probar la tecnología, y que también podría usarse para cazar basura espacial

En la imagen del día seleccionada por la NASA, la agencia espacial ha anunciado el reciente despliegue de un satélite japonés llamado STARS-C (de «Space Tethered Autonomous Robotic Satellite-Cube») desde la Estación Espacial Internacional (ISS, en inglés). La finalidad de este satélite será funcionar como un prototipo de varias tecnologías que podrían tener aplicación en el diseño de un ascensor espacial, capaz de transportar cargas hacia la órbita.

Cuando el satélite esté desplegado en cuestión de días, estará formado por dos pequeños cubos de apenas 10 centímetros unidos por un cable de kevlar de 100 metros de longitud. El conjunto apenas pesa 2,66 kilogramos.


Lanzamiento del pequeño satélite…

Los astrónomos descubren un nuevo tipo de galaxia

La mayoría de las galaxias son espirales, pero también hay formas elípticas o irregulares. El Hubble muestra la variedad en una pequeña porción del cielo, equivalente a la décima parte del diámetro de la luna, donde halló 10.000 galaxias - NASA, ESA, S. Beckwith (STScI) and the HUDF Team

Aseguran no haber visto una así nunca antes. Todo apunta a que es un objeto Hoag, unas galaxias donde un anillo rodea a un núcleo, pero que en este caso ha logrado acumular dos anillos

Si el Universo está poblado (como poco) por miles de millones de galaxias, y si cada una a su vez cobija a millones o a miles de millones de estrellas, ¿qué nos faltará aún por aprender? El astrónomo Edwin Hubble (que le da su nombre al famoso telescopio espacial) probablemente sentía vértigo cuando se planteaba esta pregunta, pero sus esfuerzos le permitieron clasificar las galaxias que observaba en cuatro grandes categorías. En función de su forma, las dividió en espirales (tienen forma de remolino, como la Vía Lácte…